Integration of Multiple Networks for Robust Label Propagation

نویسندگان

  • Tsuyoshi Kato
  • Hisashi Kashima
  • Masashi Sugiyama
چکیده

Transductive inference on graphs such as label propagation algorithms is receiving a lot of attention. In this paper, we address a label propagation problem on multiple networks and present a new algorithm that automatically integrates structure information brought in by multiple networks. The proposed method is robust in that irrelevant networks are automatically deemphasized, which is an advantage over Tsuda et al.’s approach [14]. We also show that the proposed algorithm can be interpreted as an EM algorithm with a Student-t prior. Finally, we demonstrate the usefulness of our method in protein function prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

Generalization of Decomposed Integration Methods for Cost Effective Heat Exchanger Networks with Multiple Cost Laws

At many circumstances, in heat exchange processes several exchangers were used with different cost laws due to their pressure ratings, materials of construction and exchange3r types. In such circumstances traditional methods of pinch technology can not be led to minimum total annual cost may cause some other disadvantages like more complexity or higher maintenance. In this research work a n...

متن کامل

Robust network community detection using balanced propagation

Label propagation has proven to be an extremely fast method for detecting communities in large complex networks. Furthermore, due to its simplicity, it is also currently one of the most commonly adopted algorithms in the literature. Despite various subsequent advances, an important issue of the algorithm has not yet been properly addressed. Random (node) update orders within the algorithm sever...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Robust Loss Functions under Label Noise for Deep Neural Networks

In many applications of classifier learning, training data suffers from label noise. Deep networks are learned using huge training data where the problem of noisy labels is particularly relevant. The current techniques proposed for learning deep networks under label noise focus on modifying the network architecture and on algorithms for estimating true labels from noisy labels. An alternate app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008